Индуктивный датчик своими руками

Индуктивный датчик своими руками — Пожарная безопасность

Индуктивный датчик своими руками

Датчики линейного перемещения имеют несколько классификационных уровней, но основным является принцип действия, который определяет функциональное назначение и область использования приборов.

По принципу действия приборы контроля и измерения перемещений можно разделить на:

  1. Емкостные.
  2. Оптические (оптоэлектронные).
  3. Индукционные.
  4. Датчики магнитострикционного типа.
  5. Ультразвуковые.
  6. Резистивные, магниторезистивные и потенциометрические.
  7. Приборы, использующие в своей работе эффект Холла в быту, практически не используются.

В бытовых охранных системах и устройствах контроля доступа и перемещений преимущественное распространение получили первые четыре группы датчиков.

Область применения датчиков

Любой датчик движения, вне зависимости принципа действия, предназначен для преобразования линейного перемещения в цифровой или аналоговый сигнал, который затем поступает к электронному блоку измерения или срабатывания. От принципа действия зависит точность измерения.

Часто нет необходимости в замере конкретной величины перемещения. Например, в охранных системах достаточно просто определить наличие перемещения в зоне контроля.

Эти приборы получили название датчиков движения. От них не требуется высокая точность замера величины.

Поэтому дешевые емкостные, оптические или индукционные устройства здесь наиболее распространены.

В промышленно-производственных системах автоматического управления требуется измерения величины перемещения.

Причем измерение (например, в станках с числовым программным управлением) должно быть проведено с высокой точность и осуществляется или непрерывно, или дискретно — через определенные промежутки времени. В этом случае наибольшее распространение получили магнитострикционные приборы.

Емкостные датчики

Простейший емкостный датчик по своей конструкции напоминает конденсатор. При движении контролируемого объекта его емкость может изменяться путем:

  1. Изменения величины зазора между пластинами.
  2. Изменения взаимного положения пластин и как следствие этого увеличения (уменьшения) зоны взаимного перекрытия.
  3. Изменения диэлектрической проницаемости изолирующего слоя.

При изменении емкости устройства эта величина может сама по себе служить сигналом, передаваемый к электронным блокам управления, а может включать генератор импульсов, которые более просто поддаются дальнейшей обработке.

Наибольшее распространения емкостные устройства контроля перемещения нашли:

  1. В качестве источника сигнала в системах контроля заполнения резервуаров жидким или порошкообразным продуктом.
  2. Как прибор, контролирующий начало – окончание рабочего хода исполнительного органа робототехнических систем и автоматических станков и линий.
  3. Для позиционирования различных объектов.
  4. Как обычный конечный бесконтактный выключатель.
  5. В системах контроля и охранной сигнализации как «датчик присутствия».

Благодаря своей невысокой стоимости и надежности, емкостные устройства нашли самое широкое распространения в отдельных системах комплекса жизнеобеспечения «умный дом».

К их достоинствам, по сравнению с устройствами, использующими другой принцип действия, можно отнести:

  1. Упрощенную технологию массового производства, с использованием недорогих, широко распространенных материалов.
  2. Высокую чувствительность при малом энергопотреблении.
  3. Компактные размеры и незначительный вес.
  4. Долговечность, простоту и надёжность эксплуатации.
  5. Простоту адаптирования устройства к решению различных задач и возможность встраивания в любую конструкцию.

Основными факторами, сдерживающими широкое применение в высокоточных системах управления, являются:

  1. Относительно низкий коэффициент преобразования.
  2. Необходимость тщательной экранировки элементов датчика.
  3. Повышение точности работы прибора на более высоких частотах по сравнению с промышленной частотой в 50,0 герц.
  4. Высокая вероятность ложных срабатываний при изменении атмосферных условий (снег, дождь) что требует повышенной защиты источника сигнала.

Индукционные датчики

Сигнал в индукционных датчиках формируется за счет изменения индуктивности катушки. Приборы этого типа отличаются высокой точностью, при незначительных габаритах. Индукционные приборы контроля способны проводить измерения дистанционно, а по типу их подразделяют на простые и дифференциальные.

Читайте также  Датчик утечки воды своими руками

Одно из конструктивных исполнений этих устройств представляет собой трансформатор, сердечник которого имеет возможность передвигаться. При перемещении сердечника индуктивность катушки меняется и это изменение является сигналом. Значение индуктивности изменяется пропорционально уровня перемещения сердечника.

Если контроль перемещения осуществляется в отношении ферримагнитных объектов, то сердечник не требуется. Деталь, попадая в поле электромагнитного излучения катушки, меняет ее индуктивность и формирует управляющий сигнал.

Контролирующие датчики индукционного типа нашли широкое применение в станках с программным управлением, бесконтактных системах охраны и для фактического измерения перемещения, с отчетом его значения по цифровой шкале или с выводом информации на экран жидкокристаллического дисплея.

Оптические и оптоэлектронные приборы контроля перемещений

Набольшее распространение для контроля движения и измерения расстояния получили оптические триангуляторы, являющиеся по своей сути обычным оптическим (лазерным) дальномером.

Для контроля малых изменений линейных величин применяются приборы с поляризационной решеткой.

Кроме того, оптические датчики широко используются в системах охраны в качестве «лучевого барьера».

К достоинствам этой категории приборов можно отнести:

  1. Реализацию бесконтактного контроля.
  2. Высокую точность.
  3. Практически мгновенно формирование управляющего сигнала (отсутствие времени задержки срабатывания).

Недостатками высокоточных оптических датчиков считаются:

  1. Значительная стоимость.
  2. Критичность к условиям окружающей среды.

Производители различного типа приборов

Крупнейшим российским производителем приборов для контроля перемещений является компания «ЭЛТЕХ» (Санкт-Петербург), специализирующая на устройства для контроля и измерения величины линейного перемещения индуктивного, резистивного и емкостного типа.

Линейные потенциометры модельных линий «Longfellow-2» и «DuraStar» обеспечивает измерение величины перемещения в пределах до 610,0 миллиметров с точностью 0,5%. Стоимость приборов зависит от измеряемого диапазона (модели) и объема поставки и оговаривается при заказе.

В последнее время большой популярностью пользуется недорогие, но достаточно точные приборы китайского производства.

Наиболее распространены следующие модели:

  1. «DEPP EP15-series» — приборы индукционного типа, применяемые в станках и системах автоматического контроля;
  2. Оптическое устройство «HENGXIA K100-series» позволяет контролировать размеры в диапазоне 50,0…7200,0 миллиметров;
  3. Линейный энкодер «Roundss Rlc50d» по сути является электронной рулеткой, позволяющей с высокой точностью замерять размеры и контролировать пройденный путь.

Стоимость китайской продукции зависит от курсовой стоимости рубля и уточняется при заказе.

Прибор контроля перемещения своими руками

Прибор для измерения величины перемещения изготовить самостоятельно практически невозможно. Однако радиолюбители достаточно часто собирают из вышедшей из строя радио и электронной аппаратуры датчики движения, которые с успехом используются в системах безопасности и жизнеобеспечения.

Например, датчик можно использовать для включения света в туалете, когда в помещение санузла заходит человек. Не менее популярны подобные устройства для включения-отключения освещения в жилых помещениях.

И конечно эти приборы незаменимы при формировании собственной системы безопасности, где они фиксируют любую попытку (неважно человек это или животное) несанкционированного проникновения на территорию защищаемого объекта (садового участка, балкона, гаража). Изготовление самодельного датчика движения рассмотрим на примере сборки оптоэлектронного устройства, контролирующего пересечение охраняемого периметра.

Из деталей для изготовления самого прибора потребуются:

  1. Блок питания от мобильного телефона с напряжением на входе 5,0 вольт.
  2. Фотоэлемент – лучше фоторезистор.
  3. Биполярный транзистор с «p-n-p» — переходом.
  4. Построечный потенциометр (сопротивление) с диапазоном регулировки 0…10,0 килоом.
  5. Электромагнитное реле, срабатывавшее при напряжении 5,0 вольт.
  6. В качестве источника излучения идеально подойдет лазерная указка, дающая тонкий, узконаправленный луч.

Порядок соединения схемы следующий:

  1. Катод фотоэлемента припаивается к плюсовому проводнику блока питания – эта точка будет является общим (массовым) проводником.
  2. К аноду фотоэлемента присоединяется просторечный потенциометр, при выведении его движка в среднее положение.
  3. Свободный контакт потенциометра припаивается к отрицательному проводнику блока питания, а контакт от его движка к базе транзистора.
  4. Эмиттер транзистора включается подсоединяется к общему «плюсу» схемы, а коллектор соединяется с одним из контактов реле.
  5. Второй контакт реле припаивается к отрицательному проводу блока питания.
Читайте также  Датчик линейного перемещения своими руками

При освещении окошка фотоэлемента лазерной указкой, поворотом движка потенциометра добиваются надежного срабатывания реле. К коммутационным контактам реле можно подключить любой источник сигнала – ревун, лампу накаливания, светодиодный индикатор. Недостатком данного устройства является то, что оно срабатывает только при пересечении луча света.

Источник: https://drakkar11.com/induktivnyy-datchik-svoimi-rukami/

Индукционный датчик своими руками — Металлы, оборудование, инструкции

Индуктивный датчик своими руками

В принципе имеется две схемы работы — с выходным напряжением и выходным током.

Схема работы с выходным током (4-20мА) Схема работы с выходным напряжением

Рассмотрим более детально сам процесс измерения перемещения.

Датчик перемещения, работающий по технологии LVDT, состоит из трех обмоток трансформатора — одной первичной и двух вторичных. Степень передачи тока между первичной и двумя вторичными обмотками определяется положением подвижного магнитного сердечника, штока. Вторичные обмотки трансформатора соединены в противофазе.

При нахождении штока в середине трансформатора, напряжение на двух вторичных обмотках равны по амплитуде, а т. к. они соединены противофазно, суммарное напряжение на выходе равно нулю — перемещения нет.

Если шток перемещается от серединного положения в какую либо сторону — происходит увеличение напряжения в одной из вторичных обмоток и уменьшение в другой. В результате суммарное напряжение будет не нулевым — датчик будет фиксировать смещение штока.

Соотношение выходной фазы сигнала по сравнению с фазой возбуждающего сигнала дает возможность электронике понять, в какой части обмотки находится в данный момент шток.

Основная особенность принципа работы индуктивных датчиков перемещения состоит в том, что прямой электрический контакт между чувствительным элементом и трансформатором отсутствует (связь осуществляется через магнитное поле), что дает пользователям абсолютные данные по перемещению, теоретически бесконечную точность разрешения и очень долгий срок службы датчика.

Особенности схемы работы с выходным током — т. к. цепь генератор/демодулятор встроена в сам датчик перемещения и питается от выходного тока 4-20 мА, то нет необходимости во внешнем оборудовании для формирования сигнала.

Особенности схемы работы с выходным напряжением — цепь генератор/демодулятор, встроенная в датчик перемещения обеспечивает возбуждение и преобразует сигнал обратной связи в напряжение постоянного тока. При этом так же не требуется внешнее оборудование для формирования сигнала.

Особенности измерения выходного сигнала.
1) Если выходное напряжение измеряется не фазочувствительным (среднеквадратичным) вольтметром, то отклонение штока в любую сторону от центрального положения в трансформаторе датчика будет соответствовать увеличению выходного напряжения.

Заметим, что кривая не касается горизонтальной оси. Это происходит из-за остаточного выходного напряжения.

2) Если используется фазочувствительная демодуляция, то по выходному сигналу можно судить, в какой части трансформатора находится шток в данный момент.

Для формирования сигнала всегда используется фазочувствительная демодуляция, т.к. это исключает влияние на выходной сигнал остаточного выходного напряжения и позволяет пользователю знать положение штока в трансформаторе.

Диапазон линейности индуктивного датчика перемещения.
Если мы рассмотрим выходную кривую вне механического диапазона типичного LVDT датчика, то можно заметить, что на краях диапазона кривая изгибается. Это значит, что механический диапазон существенно шире линейного участка работы.

При калибровке датчика, важно, что электрическая нулевая точка используется в качестве ссылки, и что датчик используется в пределах ± FS (полного диапазона) вокруг электрического нулевом положения.

Если проводить калибровку не беря за основу точку ноля вольт, одно из положений полного диапазона будет за пределами линейного диапазона и, следовательно, может привести к ошибке линейности.

Типы индуктивных датчиков перемещения

Тип 1 — несвязанные преобразователи, которые имеют якорь, который отделен от тела корпуса. Части датчика должны быть установлены таким образом, что якорь не прикасался к внутренней трубке корпуса. Сделав это, можно получить абсолютное отсутствие трения при движении чувствительного элемента датчика.

Читайте также  Принцип действия инфракрасного датчика движения

Тип 2 — монолитные преобразователи, которые имеют тефлоновый подшипник, который направляет якорь (шток) по внутренней трубке.

Тип 3 — монолитные преобразователи с возвратной пружиной, которая толкает якорь (шток) наружу.

Преимущества индуктивных датчиков перемещения LVDT

1. Преимущества над линейными потенциометрами (POTS).

  • Не имеют контакта корпуса и внутренних деталей с чувствительным элементом, что означает, что нет никакого износа при движении штока. POTS датчики имеют контакт с чувствительным элементом и могут быстро изнашиваются, особенно под воздействием вибрации.
  • Можно легко обеспечить защиту от влаги и пыли на требуемом уровне, даже стандартные версии LVDT датчиков обычно имеют гораздо лучший уровень защиты от внешний воздействий, чем POTS.
  • Вибрация не вызывает влияния на пропадание сигнала, в отличие от POTS, где скользящий бегунок может прервать контакт с проводником при вибрации.

2. Преимущества над магнитострикционными датчиками.

  • Не восприимчивы к ударам и вибрации.
  • Менее восприимчивы к паразитным магнитным полям окружающей среды.
  • Система формирования сигнала может быть удалена от чувствительного элемента на некоторое расстояние, что позволяет использовать датчики при работе с высокой температурой и высоким уровнем радиации.
  • Магнитострикционные датчики не имеют короткого штока ±100мм или менее, а это как раз наиболее востребованный диапазон технического применения датчиков перемещения.

3. Преимущества над кодерами (датчиками положения).

  • Имеют лучший аналоговый частотный отклик.
  • Имеют более прочный корпус.
  • Сразу после включения «знают» положение штока, в отличии от кодеров, которым надо указывать постоянную ссылку на известное положение.

4. Преимущества над переменными векторными резистивными преобразователями (VRVT)

  • LVDT датчики как правило более дешевы.
  • Имеют меньший диаметр корпуса.
  • Более прочные и не изнашиваются.
  • Могут использоваться значительно дольше.

5. Преимущества над линейными емкостными датчиками

  • LVDT датчики как правило более дешевы.
  • Менее восприимчивы к внешним условиям эксплуатации.
  • Значительно более прочные.

Особенности индуктивных датчиков перемещения LVDT

  • Максимальная рабочая температура 600°C.
  • Минимальная рабочая температура –220°C (для справки, температура жидкого азота -196°C, температура жидкого гелия -269°С). 
  • Могут работать при уровне радиации 100,000 рад.
  • Могут работать при давлении 200Бар.
  • Могут работать под водой, при этом вода может попадать внутрь датчика не причиняя ему вреда. Существует специальная серия подводных датчиков, которые могут без тех. осмотра работать под водов в течении 10-ти лет, работать под водой на глубине до 2,2км. Кабельные разъемы могут подсоединяться так же под водой.

Основные сферы применения LVDT датчиков

Промышленные измерительные системы

  • Регулирующие вентили — везде, где существуют регулирующие вентили индуктивные датчики перемещения могут быть использованы для контроля положения штока вентиля. Особенно, где есть ответственные участки работы, например, в клапанах пара для турбин на электростанциях.
  • Контроль положения шлюзов — погружные датчики перемещения подходят для измерения положения шлюзов в водохозяйственных и канализационных системах.
  • Измерение зазора между валками. Для поддержания равномерной толщины проката зазор между валками часто измеряется на обоих концах.
  • Контроль перемещения штоков вентилей на подводных нефте/газо проводах.
  • Контроль работы гидравлических активаторов — измерение перемещения объекта, который передвигает активатор. Благодаря очен высокой износостойкости, данные LVDT датчики перемещения могут выдерживать миллионы циклов перемещения.
  • Контроль положения/перемещения режущих инструментов, отрезающих рулонные материалы.
  • Измеряет положение/смещение роликов, которые используется для выпрямления полосового проката перед штамповкой.
  • Могут быть использованы для динамического измерения размеров (диаметров) рулонов продукта, например, инициировать сигнал к системе управления, когда рулон достигает максимального/минимального размера при наматывании/сматывании материала.

Станки

  • Могут быть использованы в испытательных приспособлениях для измерения круглости, плоскостности и т.д. частей машин для анализа качества их изготовления.
  • Могут быть использованы для оценки и контроля взаимного расположения компонентов деталей в сборке, когда требуется юстировка/подгонка размеров взаимного расположения деталей.

Источник: https://spb-metalloobrabotka.com/induktsionnyy-datchik-svoimi-rukami/